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SUMMARY

A method of obtaining the flow of a nonviscous compressible fluid
past arbitrary compressor or turbine blades between two neighboring sur-
faces of revolution is presented. The equations of continuity and
motion obtained for such flow are cambined into a nonlinear second-
order differential equation in terms of a stream function defined for
such flow. Numericel solution by the use of differentiation coeffi-
clents for unequally spaced grid points is suggested. Means for satis-
fying the boundary conditions ocutside the channel and solutions by the
relaxation method with manual computabtion and by e matrix method with a
large~scale digital computing machine are described.

Satisfactory results were obtained by the method deseribed in the
investigation of the detailed flow variation of a compressible fluid
past typical high-solidity, highly cambered thick turbine blades on a
cylindriecal surface. The variations in fluid properties across the
channel asppeared to be representable by a second-degree function. The
mean streamline gpproximately followed the shape of the mean channel
line of the cascade and had lower curvature. The variation of specific
mass flow along the meen streamline followed the trend of the varia-
tion in the channel width. In general, the variation in specific mass
flow was significantly higher than that given by the ratio in channel
width and the effect extended outside the channel. The velocity distri-
bution around the blade obtained in the theoretical calculation compares
very well with experimental values. ‘

INTRODUCTION

A basic aerodynamic problem of turbBojet and turbine-propeller
engines is the flow of compressible fluid past a series of blades in
clrcular arrangement. In axial-flow type turbomachines, if ‘the blades
are relatively short in the radial dimension and are bounded by cylin-
dricel walls, the theoretical flow passing through the blades is usually
computed on the basis of two-dimensional flow on a cylindrical surface,
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which is then developed into a plane for convenlence of calculation. A
nunber of methods have been proposed to obtain the theoretical flow
through such a given cascade of airfoils, including analytical methods
using conformal mapping, interference technique, and Prendtl-Glauert or
Chaplygin-Kdrmédn-Tsien approximation for compressible flow (references 1
to 6) , grephical procedure (references 7 to lO), end other mechanical
and electricel devices (reference 10). For radial- and mixed-flow type
turbomachines, the available methods consider incompressible flow in a
radial plene (references 7 and 11 to 16) or compressible flow on a coni-
cal surface (reference 17). However, in current axial-flow turbo-
machines, the hub and casing walls may be elther taepered or curved,
which causes the fluid to flow on a noncylindrical surface; and in cen-
trifugal machines, the flow surfaces are usually quite curved toward
the inlet (see fig. 1). A method of analysis is therefore developed at
the NACA Lewis laboratory to analyze the two-dimensionel compressible
flow for the £luid between two neighboring surfaces of revolution in
these turbomachines (fig. 1). The equations of conbinuity end motion

for irrotational absolute flow are first obtained for such flows and are

then combined into a nonlinear second-order partisl differential equa-~
tion. Because the change of fluid properties passing through turbo-
mechine blades is, In general, large and the shapes of surface and
blades are arbitrary, numerical solution by the finite-difference
epproach is suggested.

Solving the flow through a cascade of blades of arbitrary camber
and thickness by the finite-difference method involves two main diffi-
culties: (1) the curved boundaries formed by the blade surface, and
(2) the large number of grid points necessary to cover the whole flow
region. The first difficulty is removed by the recently available dif-
ferentiation formula and coefficients for unequelly spaced grid points
(reference 18). With these formulas and coefficients, the curved bound-
ary can be handled in the same manner as a straight boundary. The
second difficulbty can be reduced by the use of higher-degree polynomial
representations (references 18 and 19). Furthermore, if a modern high-
speed large-scale digital machine 1s available, the set of similtaneous
difference equatians in the stream function can be very quickly solved
by the matrix process given in reference 18, and consequently, suc-
cessively improved salutions for compressible flow can be obtained in a
reasongbly short time., Without such a machine, it is desirable to
obtain an approximate solution for compressible flow by either graphic,
mechanical, or other approximate methods and to use the relaxation
method (references 20 and 21) for the final improvements.

In turbomachines with a relatively large radial dimension, curved
ib and casing walls, or if designed on velocity diagrams other than the
free-vortex type, the radial flow assumes primary importance. For such
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turbomachines, methods of flow analysis have been proposed that take
into account the radial flow but consider only the variation of the
fluid properties on a mean stream surface passing between two blades

(reference 22). When applying such methods of anslysis to turbomachines

with thick blades, it is necessary to have some knowledge of the effect
of area reduction due to blade thickness on the mean flow and the rela-
tion between the blade shape and the shape of the mean streamline at
various radlii., For this reason, the method developed is applied to

investigate the detailed compressible flow in a typical turbine cascade. .

with highly canbered thick blades. The theoretical velocity on the
blade is compared with experimental data obtained at the NACA Lewis
leboratory.
SYMBOLS
The following symbols are used in this report:

a,b,¢c points on streamline

B differentiation coefficients

c constant

E exrror

H total enthalpy based on absolute velocity
h static enthalpy

I h + % We - 32'- wlr2

L blade length projected on z-axis

1,9 arthogonal coordinates on mean surface of revolution, (fig. 1)

M total mass flow passing through space between two neighboring
blades

n degree of polynomial

P pitch or spacing

P static pressure

r radiael distance from the axis of machine, (fig. 1)
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t blade thickness in pitch direction
W velocity relative to blade
¥ rTo
z distence along axis of machine, (fig. 1)
a flow angle in IP-plane, tan'll% ;—I—ZCP
e ratio of specific heats

grid spacing
p mass density
o tan-1 gﬁ, (fig. 1)

z

T normal thickness of stream filament of revolution, (fig. 1)
¥ stream function
o angular velocity of blade
Subscripts:
i inlet
Jyk grid 'points where differentiation coefficients are applied
1,9 meridional and circumferential component, (fig. 1)
m mean streamline .
n degree of polynomial
js] pressure surface
s suction surface
T total, or stagnation, state
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Superscripts:
a,b,c, « . «» 1,3,k grid points

1,2 indicate first and second derivatives, respectively

METHOD OF SOLUTION

2151

The steady isentropic flow of a nonviscous compressible £luid along
a stream filament of revolution described by the orthogonal coordinates
1 and ¢ on the mean surface of revolution and a varying narmal thick-
ness of the filament T (fig. 1) is governed by the following equa-
tioms of continuity and irrotational absolute flow and the isentropic
pressure-density relation (see appendix for derivation of the first two
equations):

ofrowyr) (T pWy) .
( al'l,r + (acp P =0 (l)

oW oW sin ¢
oL L, % ——+ 20 8in 0 =0 (2)

ol r 0P
p=Co¥ (3)

From equation (I), a stream function V¥ can be defined by the
following relations:

-5

Substituting equations (4) in equation (2) results in

%y (sind alnT) 1 %
52 \r T TS g‘f";ﬁgﬁf'

T prr

(4)

T qu)

(a—alg—pg%i+fga—%‘§—9%+mmsmc)=o -~ (5)
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In the nmumerical solution of the problem, iteration is necessary
for campressible flow. A network of grid points is chosen to cover the
whole flow region, and finite-difference equations are obtained for the
first three terms of equation (5). The last term is taken as constant
during the solution of the V¥ values and recamputed from the improved
values of Y for the next solution (references 20 and 21). In this
way, the numerical coefficients at each grid point are determined by
the geometry of the problem alone.

TST2

The value of density is most canveniently expressed throughout the
flow region in terms of velocity and enthalpy by the use of equatiomn (3)
and the relation for a perfect gas:

1

1 T-1
FT [I+iw?r2 -1y
p__[h - 2 2

Pp g \Ep Hy (&)

where I is constant throughout the flow region for adiasbatic, abso-~
lutely irrotational, and steady relative flow (reference 22). (For
application to stator blades, ® becomes zero, W becomes the abso-
lute velocity, and I becomes H.) If the components of W as
expressed by equations (4) are substituted in equation (8), the follow-

ing equation 1is

L
T-1

1 N2 1 aqf)z
o _ “5“’21'2_@ + 75 \Sp )
°T,1 B 2 H; TZp%

In order to facilitate the evaluation of the density from the
Yy-derivatives, equation (7) can be rewritten in the following form:

2
g=(-0k)" (72)

where
2

- ——

1 -1
(7o)




TSTS

NACA TN 2407 7

and

-
1

-1 1 Y-
2 2 I+ = wlrd
o= [@—i’-) + ;]'-'Z (%)] [2(1' pT,i)z Hi] —————gi (7¢)

With the relation between p &and VY-derivatives in this form, either a
table may be constructed by computing 2 for equally spaced values of &
through iteration on a punch card machine, or a graph may be canstructed
by computing ® for & number of Z. Because pT,i’ Hy, I, o, o,

and T are all known values, with the aid of the table or graph, the
value of density at any point can be easily obtained after the first-
order derivatives of Y are camputed by using the differential coeffi-
cients for equally and unequally spaced grid points given in refer-
ences 23 and 18, respectively.

The first-order derivatives of density are then computed and com~
bined with the first-order derivatives of V. If the last term in equa-~
tion (5) is denoted by J and the differentiation coefficients, which
miltiply the V¥ value at point J to give the second and first
derivetives at point i using an nbh-degree polynomial, are demoted by
]21]3?]' and g—le_j-, respectively, the finite-difference form of equation (5)
at the grid point i can be written as

n : n ZB]i‘ ‘ .
) el 2m ) mv ) meeso o
k=0

3=0

where VJ and VK denote ¥ values on the surface along 1 and @
coordinates, respectively (figs. 1 and 2). If second-degree polynomial
representaticn is chosen (n=2), +three points are involved in the
numerical differentiation in each direction, and the center-point for-
mils can always be used for all interior grid points. If fourth-degree
polynomial representation is chosen (n=4=) , Ffive points are involved
in each direction and the off-center-point formula has to be used at
the point next to the boundary. Two typical cases where odd spacings
are used in the calculation of the coefficlents because of a curved
boundary are shown in figure 2. In the case where Wi is at J=2,
k=2, the center-point formula is used in both directions, with equal-
space l-direction coefficients obtainable from reference 23 and
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with ®-direction coefficilents for the odd space at the boundary obtain-
able from reference 18. In the other case where ¥+ is at J=2,

k=3, =again the equal-space center-point coefficients are used in the
1-direction; but in the @-direction an off-center-point formula for
coefficients must be used, including an odd space at the boundary,
again obtainsble from reference 18. It is desirable, where possible, to
have the spacing near the boundery somewhat shorter than the reguler
equal spacing so that accuracy at the point next to the boundary is
camparable with that at other points. By using a five-point system,
many less grid points are required in comparison with the three-point
system for the same accuracy. (See reference 18.) In the present -
problem, the variation of ¥ is only rapid near the leading and trail-
ing edges of the blade and the grid pattern should be determined far
these regions first.

2151 »

After the degree of polynomial representation dnd the size of grid
have been chosen, a finite-difference equation (8) can be easily written
for each interior grid point using the differentiation coefficlients far
equal and cnequal grid spacings. The constant ¥ value on the suction =
surface can be arbitrarily chosen and the constant ¥ value on the
pressure surface is determined by the mass flow passing through the
channel or at the inlet as follows:

qu - Y = g% dp = ToW,r 4P =M (9)
Ps Ps

Outside the channel two reference lines, a pltch angle apart, can be
drawn either parallel to the 1-axis or parallel to the inlet and exit
angles in the 1Q-plene. (Parallelism with the inlet and exit angles,
as shown in fig. 3, is a little more convenient for the purpose of
drawing streamlines after the solution is cbtained.) Because the
fluid state repeats itself for each pitch angle along the ®-direction,
only the grid points lying between the reference lines need to be
included in the calculation when the number of grid spaces per pitch
angle is an integer, and the central five-point formula can alweys be
used at every grid point between these lines. For example, at grid
point ¢ (fig. 3), the ¥ values at a and b are cbtained in terms
of the ¢ values at i and Jj, which are a pitch angle apart from
a and b, respectively, by the following relation:

Ve =91 + (¥ - ¥s) .
(10)
¥ = yd o+ (i - ¥y)



W

NACA TN 2407 9

Inlet and Exit Boundary Conditions

The solution of the present problem in terms of V¢ has an inter-
esting feature in the boundary conditions. As noted in the previous
section, the ¥ value is constant along either the suction or pressure
surfaces, which are fixed boundaries; and outside the channel, there is
no longer a fixed boundary, but there is the condition that the flow
repeats itself for every pitch angle in the @-direction. Sufficiently
far upstream of the blade, an inlet station can be chosen so the bound-
ary condition there requires the fluid state to be uniform in the
®-direction and prescribes the inlet angle Bi. The following two
methods have been devised to account for this boundary condition:

Fixed-angle method. ~ A part of the grid system in the Ip-plane
near the inlet station i-i is shown in figure 4(a). In order to write
the finite-difference equation at point a, the value of ¥ at
point ¢ to the left of station i-i can be obtained by using the given
inlet angle B4 and the linear variation of ¥ at station i-i

8y tan «
Il!c=\lfd=‘lfa+"—1?—i(¢b-‘lfa)

¢} ts]
=<l-g-étand'i>1lfa+<§%)tanmj> b | (11)

The coefficlents of V& and VP in equation (11) after having been
multiplied by nBi are added to the regular coefficients at points a

and b; otherwise the points a and b are treated in the same manner
as other interior points. Whether the inlet station i-i is chosen suf-"
ficiently far away from the blade is indicated by the linearity of the
Vv varilation at that station as obtained in the solution.

Streamline-adjustment method. - If the first station i-i is chosen
sufficiently far from the blades, the variation of stream function to
the left of the station i-1 is linear in the circumferential direction.
The value of the stream function, however, depends on the inlet angle.
If solutions for a range of inlet angles are desired, they can be
obtained by specifylng a pumber of linearly varying stream functioms to
the left of station i~i as fixed boundary values. The streamline
obtained in the solution then gives the value of the inlet angle. If,
however, the solution for a certain inlet angle is desired, the stream-
line obtained in the solution must be adjusted according to that inlet
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angle, (for example as ab in fig. 4(b) is adjusted to position ac),
thereby obtaining an improved set of boundary values of the stream
functions to be used in the next calculation. This method is of course
not as accurate and convenient as the fixed-angle method for obtalning
a solution for a given inlet angle but is desirable in the matrix solu-~
+tion (to be discussed in the following section) because the inlet angle
is not involved in the matrix factorization, making the same matrix
factors usable for a range of iniet angles and Mach numbers.

At the exit station far downstream of the blade, the same methods
caen be applied. Far a blade having a sharp trailing edge, the Kutta-
Joukowski condition can be used and the correct exit angle far down-
stream is the one that gives the £low at the trailing edge satlisfying
that condition. For round trailing edges, either the position of the
stagnation point can be assumed or some availgble empirical rules for
the exit angle used. If the calculation is made to compare with cer-
tain experimental results, the measured exit angle can be used.

Solution of Finite-~Difference Equations

With the grid system and the degree of polynomiel representation B
chosen and the boundary conditions teken into account, the problem
remaining is the solution of the set of N linear algebraic equa-
tions (8) written for N interiar grid points. For a small number of
solutions with a given blade, the best method is the relaxation method
(reference 20). A modificetion of this method involving the use of
higher-order differences is suggested by Fox (reference 18). Formules
and the table of coefficients obtained in reference 18 enable the
direct use of higher-degree polynomiels for problems with curved bound-
aries. TFor the present flow problems, it is necessary to include a
large damain to get to the boundary conditions that are given at places
far from the blades. The use of higher-degree polynomials will greatly
reduce the numerical work.

If a number of cases are to be solved far a given set of blades
on a given surface, it is advantageous to solve the problem on a large-
scale digital computing machine. If a very high-speed digital machine
is available, the simultaneous equation is best solved by Liebmammts
iterative process, which is the most simple to set up (reference 24).
I? only a relatively slow-speed machine is available, the matrix
process suggested in reference 18 1s most suitable.
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Matrix solution. - In the matrix solution, the entire equation (8)
is used with p being kept constant during any one cycle. Several
cycles are necessary for compressible flow because p 1is in a continual
process of change during each calculation according to equation (7).
The matrix method is found most satisfactory when several solutions are
required for a given blading configuration, (for instance, in the case
where the flow 1s to be determined through a blading at several inlet
Mach numbers or inlet angles) because the factorization of the matrix
is the most time-consuming part of the problem and once completed the
matrix may be used again and again as one of the inlet flow conditions
is varied. For example, in a prcblem similar to the cascade problem
in which 400 grid points and fourth-degree polynomials were used, it
took about 60 hours to factorize the matrix on an IBM Card Programmed
Electranic Calculator, and solving the set of values of ¥ at all
grid points for a given set of J values only takes 2 hours. The
rounding-off error is found to be very small.

Relaxation solution. - In the relaxation solution, the entire equa-
tion (8) is used in the calculation of the residuals; but only the first
two terms are used 1n the actual relaxation. As in the matrix solution,
several cycles are required for compressible flow because p 1is not
allowed to vary during the relaxation process whereas actually p 1is
changing according to equation (7). Consequently, after each cycle
new values of p are calculated and used in the determination of an
improved J as 1n the matrix method.

Tteration method of Liebmann., - The iteration method of Liebmann
1s simplest to set up on a digital computing machine; but it is the
slowest method, and therefore it can only be used for the present
problem on & high-speed machine. The boundary conditions and the
between-cycles J correction process are the same as those in the
metrlx end relaxation methods.

ACCURACY OF FINAL RESULTS

Several factors affect the accuracy of the final results: the
degree of Lagrangian polynamial used, the size relative to the airfoil
of the network spacings, the smallness to which the residuels are
reduced, and the mmber of cycles carried ocut for compressible flow.

The fourth-degree Lagranglan polynamial has been found to be the
most applicable to the type of calculation under consideration. The
use of a second-degree polynomial, in general, requires a smaller
grid spacing, necessitating a much larger number of network points than

by L

1
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the fourth-degree polynomial. Polynomials of higher degree than the

fourth are not desirable within the channel, because fitting the points . *
necessary for these higher-degree polynomials circumferentially inside

the channel may require a smaller grid spacing. Also the accuracy near

the leading and trailing edges of the blade is best obtained by using

small spacing. Outside the channel, however, the use of a higher-

degree polynomial would not only reduce the amount of work but also

would specify more completely the condition that the flow repeats cir-

cunferentially every pitch angle.

TOTO

Formulas that can be used, after the problem has been campleted,
to determine the order of magnitude of the error at any point are given
in references 18 and 23. These formulas give only qualitative informa-
tion concerning the obtainable accuracy for the grid size and the
degree of polynomial chosen, especially when there is no solution of a
similar problem aveilable. Because no solution is available with which
to apply these formulas at the start of the example to be discussed in
the following section, a samewhat smeller grid spacing than that
required for the use of a fourth-degree polynomial across the channel -
is chosen. (See fig. 3.) Results cbtained in that example indicate
that the grid chosen gives sufficlent accuracy for the present purpose.
If a more accurate result is desired around the nose or tail region,
either small spacing can be used in these regions or the flow in these
regions can be improved by using a finer net after the solution is
obtalned with the original coarse net.

For the matrix and iteration methods, the final aceuracy is
determined by the choice of grid size and degree of polynomial; for
the relaxation method, however, the degree of residual reduction must
also be included in an accurac¢y determination. The smallness to which
the residuals can be reduced depends essentially on the amount of
labor put into the problem; but the smallness may. be limited by the
use of too large grid spaces or too low a degree of polynomial. An
approximate method for estimating, at the beginning of the problem,
‘the degree of residual reduction necessary is outlined as follows: It
is assumed that an error of 1 percent in addition to that introduced
by the finite-difference equations will be tolerated in the first order
derivatives of V. TFor example, the following equation can be written
in the ®-direction by the use of the usual differentiation formulas

(%vg )d NCES I cp(f + 2°) (12) /’

o~
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where the V'!'s are the correct values of V¥, the E's are the mag-
nitudes of the errors in ¥, O is the grid spacing in the ¢~
direction, and the superscriptse c, 4, and e refer to three equally
spaced grid points (fig. 3). Equation (12) may be rewritten as

a‘# ‘lfc *e s Ee 13
(3?0)(1 B 25cp (2)
C . ge Yo . e

where, in this case, :E_Z_B—C,T- is less than 1 percent of —2—8'5— as

specified. As an example, take V© - ¥® equal to 1000, then

E® - E®< 10. Because a constant magnitucit rror is maintained through-
out any one area in the network, E®| < 5. The final residual
must be such that a change of of no more than S5 is necessary to
reduce the value of the residual to zero. The absgolute value of the
residual can therefore be no greater than the absolute value of 5 times
the relaxation coefficient at the point in question when the final
accuracy is reached. For relatively small grid spacings, this method
should give a good estimate of the magnitude of allowgble residual.
Becausge the relaxation coefficient at the polnt in question varies from
point to point, it is advisable to place the corresponding maximm
allowable residuaels on the relaxation sheet for ready reference.

NUMERICAT, EXAMPLE

The method described is applied to analyze the detailed flow past
turbine blades on a cylindrical surface as shown in figure 3. In such
a case, 0 equals O, 1 becomes 2z, and it is more convenient to
use a distance on the circumference y(=r¢y) instead of the angular
coordinate o (the reduced equations are given in the appendix).
Because only one incompressible and one compressible solution were to
be obtained at the design condition, the finite-difference equations
were solved by the relaxation technique. This particular cascade was
chosen because of the relatively high turning and the considerable
thickness of the blade involved, thus giving the .method described a
thorough test. Experimental data for several inlet Mach numbers are
availasble for this cascade, Increasing its value as a problem choice.
The pitch and axial chord of the cascade are 1.01l7 and 1.5 inches,
respectively.

The grid, shown superposed on the cascade in figure 3, was obtained
by dividing the pitch into eight equal parts, thereby arriving at a grid
spacing of 0.1271 inch, which is used in both y and =z directions.

As suggested, fourth-degree Lagrangian polynomials were used throughout
the domain to obtain the finite-difference equations.

The reference lines outside the channel were drawn parallel to the
flow at the inlet and the exit. The inlet angle is given as 41°18!.
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The exit angle, as computed by the measured pressure far downstream
and the continulty equation, is equal to -52957', which checks quite
well with the inverse-sine empirical rule. The fixed-asngle method was

used to account for the inlet and exit boundary condition. The inlet

and exit boundaries were placed a distance equal to 1% times the pitch

from the cascade channel, which was found to be more than sufficient.

The results obtained from the relaxation solution of this cascade
serve a threefold purpose: (1) They show the usefulness of the method
discussed; (2) they give some detailed information concerning the var-
iation of flow in a two-dimensional cascade that may serve as g basis
for devising some simple, good approximate methods of analysis; and (3)
they give some useful information for the through-flow analysis in
‘turbines having thick blades.

ST

The results obtained in the incampressible solutlon are shown in
figures 5 to 1l3. The variations of the magnitudes of Wy, Wy, and W
across the channel are shown in flgures 5 to 7. The variation in Wy (
is seen to be larger than that in W, and larger at the leading por-
tion of the channel than at the trailing portion of the channel. The ,
variation of the velocity components across the channel can be accu-
rately represented by a second-degree function in the y-direction.

Several streamlines, with equal mass flow between them, are shown
in figure 8. Also shown is the mean channel line and the mean camber
line. The mean streamline, which divides the mass flow in the channel,
is seen to have a curvature less than either the mean channel line or
the mean camber line and is closer to the suction surface than the
pressure surface. (The mean camber line has the highest curvature.)
The slope of the mean streamline is compared wilth those of the blade
mean camber line and the mean channel line in figure 9. Inside the
channel the absolute value of the mean streamline slope is found to
be lower than those of the mean camber and mean channel lines. Pro-
ceeding outward from the inlet channel proper the mean streamline
slope at first increases gbove and then approaches the specified inlet
and exit values. Figure 9 shows that the specified values are reached
approximately one pitch distance from the blade.

The verietions of the mean streamline velocity components and thelr
derivatives with respect to 2z are shown in figures 10 to 13. In fig-
ure 10, the variation of W, along the mean streamline is compared with
the variation in channel width. TInside the channel, the increase in
Wy, due to reduction in channel width 1is on the average about 4 percent
higher than that given by the one-dimensionsal calculation hased on the
reduction of the channel wildth. The difference is due to the nonlinear
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variation of W, across the channel. The influence of the blade thick-
ness alsc extends a short distance both upstream and downstream of the

" channel. With a finite blade thickness and a finite blade spacing, the

tangential velocity on the mean streamline (fig. 12) is seen to rise
above its inlet value in front of the leading edge, to decrease rapidly
for the first half of the channel, and then to decrease slowly to a
value below its exit value for a short distance downstream of the trail-
ing edge. The derivative with respect to 2z of the tangential velocity
is shown in figure 13.

The compressible solution is obtained for an inlet Mach number of
0.42 in order to compare it with the available experimental data at
thet inlet Mach number. The results cbtained (figs. 14 to 23) are pre-
sented in the same manner as those for the incompressible case. The
velocities (figs. 14 to 16) show a somewhat higher rate of variation
across the channel and can again be approximated by second-degree func-
tions.

The difference in streamlines between the compressible (fig. 17)
and the incompressible (fig. 8) solutions is appreciable. In general,
the streamlines are pushed farther sway from the suction surface. As a
result, the mean streamline now approximates the position of the mean
channel line better than in the incompressible case but still has a
significantly lower curvature.

The comparison between the slope of the mean streamline and those
of the mean camber line and the mean channel line in the compressible

. case (fig. 18) is similar to that in the incompressible case (fig. 9).

Tnstead of the axial velocity in the incompressible case, the specific
mass flow pW, on the meen streamline is compared with the channel
width in the pitch direction in figure 19. The comparison is similar
although the difference is somewhat greater in the compressible case.
The tangential velocity on the mean streamline obtained in the com-
pressible solution (fig. 20) and its derivative (fig. 21) are again
similar to the corresponding curves obtained in the incompressible
solution.

The velocity obtained around the blade in the compressible solu-
tion 1s compared in figure 22 with the experimental data cbtained at
the NACA Tewis lsboratory. The agreement is better at the pressure
surface than at the suction surface, as might be expected, and is sat-
isfactory as a whole. Constant Mach number contours obtained in the
relaxation solution are shown in figure 23. With an inlet Mach number
of 0.42 and exit Mach number of 0.55, the variation of Mach number from
the pressure surface to the suctlion surface is quite large. The maximum
Mach number on the suction surface exceeds 0.8.
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SUMMARY OF RESULTS

A method of obtaining the flow of a nonviscous compressible fluid
past arbitrary compressor or turbine bledes between two surfaces of
revolution is presented. The equations of continuity and motion
obtained for such flow are combined into a nonlinear second-order par-
tial differential equation in terms of a stream function defined for
such flow. Numerical solution by the use of differentiation coeffi-
cients for wnequally spaced grid points is suggested. Means for satis-
fylng the boundary canditions outside the channel and solutions by the
relaxation method with manual computation and by a matrix method with
a large-~-scale digital camputing machine are described.

Satisfactory results were obtained by the method deseribed in the
investigation of the detailed flow variation of a compressible fluid past
typical high-solidity highly cambered thick turbine blades on a cylin-
drical surface. The variations in fluid properties across the channel
appeared to be representable by a second-degree function. The mean
streamline approximately followed the shape of the mean channel line
of the cascade and had lower curvature. The variation of specific mass
flow along the mean streamline followed the trend of the variation in
the channel width. In general, the variation in specific mass flow was
‘significantly higher than that given by the ratio in channel width and
the effect extended outside the channel. The velocity distribution
around the blade obtained in the theoreticel celculation compares very
well with experimental values.

Lewls Flight Propulsion Laboratory,
National Advisory Committee for Aercnautics,
Cleveland, Ohio, February 5, 1951.
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APPENDIX - DERIVATION OF EQUATIONS

If the fluld flow in turbamachines can be assumed to occur on sur-
faces of revolution, it may be analyzed on a two-dimensional basis with
the flow passing through a pumber of stream filaments of revolution
(fig. 1(a)), the thickness of which may be taken as that obtained in a
through-flow calculation (reference 22). Such flow can be most con-
veniently described by a set of orthogonal coordinates 1 and o,
where 1 is the arc length of the generating line of the mean surface
of revolution in the meridional plane, and ¢ is the angle (fig. 1(b)).
When the flow across an element defined by diI and d is considered
(fig. 1(c)), the continuity relation for steady relative flow gives

1 dar .
pWy Trde + pwq, ('r+ Ed_zd7’> dar -

<L>WZ+§—(%Z)<1'L> (r+sinod7,) <T+§—;‘dz>dcp-

O pWep)
Q:wcp+—(g—c’%dcp><7+%%dz> a =0

Factoring out 49 dl and allowing d4® and 41 +to epproach
zero in the factor yield

aT o(pHy) 3 (el
- pWir = - T -~ pWTsin o - T =0 Al
di ol pHL P (a1)

By the use of the relation

'aT = sgin o (Az)

equation (A1) cen be written as

o(rpW 9
o), 20 )

For steady adisbatic frictionless flow with uniform inlet condi-
tions, the equation of motion in the circumferential direction can be
obtained from equation (l4a) of reference 22 as
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oW
%{&pz' - 5%- l:r(qu + L(I[‘ﬂ} =0

100, Wy Wpsing

r S - ST ——— - 2wsino=0 (2)

Special Case of Conical Surface
For the special case of two-dimensional flow between two neighbor-
ing surfaces of revolution, where the meen stream surface can be taken

as the surface of a right circular cone whose axis coincides with the
z-axis, ¢ becomes a constant. If 1 1is measured fram the apex of

the cane,

r=1s8ino

and equations (2) and (5) become, respectively,

1M _SWp W 5 ing -0 (a4)

and

0 1? P g%,+ fé.é_%ﬁr_e.%% + 20pT sin %> =0 (A5)

Alternative forms of equations (1) and the preceding two equations can
be obtained In terms of 1 and an angle measured on the canical sur-
face, as given in reference 17.

TGTZ
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Special Case of Cylindrical Surface

For the speclal case of flow on & stream filament "of revolution

whose mean surface is a cylindricel surfece, ¢ becomes zero, 1 becomes
z, and equatians (1), (2), (4), and (5) reduce to the following forms:

o
(';ZWZ)+ a(gg ) o (46)
W, oW \
y __Z_
S "5 - 0 (A7)
s % (a8)

2
qu_ala.:r;'rggg 23 a%,;pamy TB%>‘O (A'9)

dz2

where y =r® and r 1is a constant. When r is constant, the rela-
tion between density and Y~-derivatives is simplified to

L
T-1

o G o

Pp,3 2 B, T2p2

Vhen the general table cr graph constructed according to equation (7a)
2 2 2
is used, ¥ becomes simply [——) and ¢ becomes (%‘[> +<ﬂ>
Pp 1 z oy

b

-1
2, .2
(ZHiTpT’i) .
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Figure 4. - Treatment of inlet boundary condition.
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Figure 20. - Vdriation of tangential velocity on mean streamline with
respect to axis for compressible solution. Inlet Mach number, 0.42.
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Inlet Mach number, 0.42.
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